首页> 外文OA文献 >Convergence and efficiency of adaptive importance sampling techniques with partial biasing
【2h】

Convergence and efficiency of adaptive importance sampling techniques with partial biasing

机译:自适应重要性采样技术的收敛性和效率   部分偏向

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a generalization of the discrete-time Self Healing UmbrellaSampling method, which is an adaptive importance technique useful to samplemultimodal target distributions. The importance function is based on theweights (namely the relative probabilities) of disjoint sets which form apartition of the space. These weights are unknown but are learnt on the flyyielding an adaptive algorithm. In the context of computational statisticalphysics, the logarithm of these weights is, up to a multiplicative constant,the free energy, and the discrete valued function defining the partition iscalled the collective variable. The algorithm falls into the general class ofWang-Landau type methods, and is a generalization of the original Self HealingUmbrella Sampling method in two ways: (i) the updating strategy leads to alarger penalization strength of already visited sets in order to escape morequickly from metastable states, and (ii) the target distribution is biasedusing only a fraction of the free energy, in order to increase the effectivesample size and reduce the variance of importance sampling estimators. Thealgorithm can also be seen as a generalization of well-tempered metadynamics.We prove the convergence of the algorithm and analyze numerically itsefficiency on a toy example.
机译:我们考虑了离散时间自我修复UmbrellaSampling方法的推广,该方法是一种自适应重要性技术,可用于对多峰目标分布进行采样。重要性函数基于形成空间划分的不相交集的权重(即相对概率)。这些权重是未知的,但是可以通过自适应算法快速获得。在计算统计物理学的上下文中,这些权重的对数最大为一个乘性常数,即自由能,定义分区的离散值函数称为集合变量。该算法属于Wang-Landau类型方法的一般类别,并且是从以下两个方面对原始的Self HealingUmbrella Sampling方法进行了概括:(i)更新策略导致已经访问过的集合具有更大的惩罚强度,以便更快速地逃脱亚稳态状态;以及(ii)仅使用一部分自由能对目标分布进行偏置,以增加有效样本量并减少重要度采样估计量的方差。该算法也可以看作是对脾气好的元动力学的推广。我们证明了该算法的收敛性,并在一个玩具实例上进行了数值分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号